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Both the amygdala and striatum are known to be critical for asso-
ciative learning. For the striatum, celebrated work in humans and 
other animals suggests its involvement in learning from prediction 
errors for reinforcement1,2. Such errors occur when there is more 
or less reward (or punishment) than expected. Supporting this 
idea, the prediction error, as quantified in theories of condition-
ing such as the Rescorla-Wagner and temporal difference models, 
has helped to explain neural signaling in this system across species, 
including blood oxygenation level–dependent (BOLD) signals in the  
human striatum2,3.

However, BOLD activity in the amygdala is not consistently corre-
lated with error signals, even in aversive conditioning tasks3. This 
raises the question of how we might computationally characterize 
learning signals in the amygdala. Such a specific characterization 
could shed further light on ideas about the structure’s distinct con-
tributions to associative learning. Current theories of amygdala 
function in humans have highlighted its role in vigilance4 and the 
detection of relevant stimuli5. Theories of associative learning in 
animals, such as the Pearce-Hall model6, describe a more specific and 
potentially related function for the amygdala7,8: the attentional gat-
ing of learning. These theories envision that, to learn cue-reinforcer 
associations, animals track a quantity, known as associability, that 
reflects the extent to which each cue has previously been accom-
panied by surprise (positive or negative prediction errors). A cue’s 
associability gates the amount of future learning about the cue on the 
basis of whether it has been a reliable or poor predictor of reinforce-
ment in the past. In other words, associability controls learning rates 

dynamically, accelerating learning to cues whose predictions are poor 
and decelerating it when predictions become reliable.

In nonhuman animals, lesion studies and, more recently, unit 
recordings have indicated that an important neural substrate for asso-
ciability is the amygdala7–9. To date, there is little direct evidence that 
the human amygdala might have an analogous role. We hypothesized 
that the human amygdala codes for associability, which is distinct 
and complementary to the striatum’s coding of prediction error  
during associative learning. Specifically, we used a computational 
model to examine an aversive reversal-learning task and asked 
whether an associability signal similar to that seen in unit record-
ings in nonhuman animals might be present in the pattern of BOLD 
signaling in the human amygdala during aversive learning8.

We asked 17 participants to complete a Pavlovian reversal-
 learning task (Fig. 1a and Supplementary Methods) and simultane-
ously recorded their BOLD signals and skin conductance responses 
(SCRs)10. The experiment began with an acquisition phase, in which 
participants were presented with two visual stimuli (mildly angry 
faces, conditioned stimulus). One stimulus co-terminated with an 
aversive outcome (electric shock, unconditioned stimulus) on one-
third of the trials (partially reinforced). The other stimulus was not 
paired with an unconditioned stimulus. The acquisition phase was 
followed by an unsignaled reversal phase, in which the identities of the 
original conditioned and unconditioned stimuli were switched10. This 
task provides a characteristic test for theories of associability, which 
predict that the associability of each conditioned stimulus should 
decline during acquisition, as the outcomes become more expected, 
and then increase rapidly during the reversal phase, when the out-
comes are again surprising.

We first fit and validated our associability model behaviorally 
using SCRs (Fig. 1b). Although previous work has found that SCRs  
correlate with cue-specific value (V) as predicted by a Rescorla-Wagner  
learning model10, we hypothesized that these responses might reveal 
additional effects of associability. To test this, we compared the fit of 
alternative learning models to all participants’ SCRs, correcting for 
the models’ different numbers of free parameters using likelihood 
ratio tests (see Supplementary Methods and Supplementary Tables 1  
and 2). Indeed, compared with the basic Rescorla-Wagner model 
using a constant learning rate, value-related SCR effects were better 
explained by values predicted by an augmented ‘hybrid’ Rescorla-
Wagner model, which gated its learning rate dynamically accord-
ing to the Pearce-Hall associability rule (c34

2  = 104.42, P < 0.00001). 
Furthermore, given that an arousal or attentional signal such as a 
SCR might directly reflect associability (a measure of cue-specific 
attention) as well as value expectation, we tested whether SCRs were 
modulated by the cue-specific associabilities learned by the model, 
over and above any value-related effects. This additional effect was 
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significant (c17
2  = 63.63, P < 0.0001). Both of 

these results support the hypothesis that the 
brain learns cue-specific associabilities and 
uses them to modulate predictive learning 
about potential aversive shocks.

To quantitatively identify the neural correlates of (aversive) pre-
diction error (δ) and associability (α), we next used the fitted hybrid 
model to generate, for each subject, trial-by-trial time series of the 
estimates for δ and α. We regressed these variables on subjects’ BOLD 
data at the time of conditioned stimuli termination (the time when, 
in the model, prediction error is realized and modulated by associ-
ability to gate learning; Supplementary Methods). These two time 
series were relatively easy to distinguish from one another, as the 
associability was determined not by the current prediction error, but 
instead by prediction errors received on previous trials with the same 
cue (Supplementary Figs. 1–3).

On the basis of lesion studies and electrophysiological recordings 
in nonhuman animals, we focused our search for associability-related 
activity on the amygdala7–9. We compared amygdala activity to that of 
the striatum, which is associated with error-driven learning in both 
humans and other species1,2, including prediction errors for both 
appetitive and aversive reinforcers3. As expected, BOLD activity in 
the bilateral ventral striatum, but not in the amygdala, was positively 
correlated with the aversive prediction error (P < 0.05, small volume  
corrected (SVC) for multiple comparisons within anatomically 
defined masks of the two structures; Fig. 2a). However, the opposite 
activation pattern emerged for associability, which was positively  
correlated with the bilateral amygdala, but not the ventral striatum  
(P < 0.05, SVC; Fig. 2b and Supplementary Methods).

To further confirm that the striatum and amygdala were differen-
tially engaged in representing prediction error and associability, we 
directly compared the mean activity in these areas (in regions defined 
functionally by the main effect of conditioned stimuli presentation 
versus baseline during early acquisition10, a contrast chosen so as 
not to bias the subsequent test for differential signaling between the 
regions, see Supplementary Methods). Specifically, we compared 
the effects of different components (α and δ) of learning signal 

across regions (striatum and amygdala) using a two-factor, repeated- 
measures ANOVA on the regression coefficients from individual 
subjects. We observed a significant interaction of region and model 
component (F1,64 = 5.75, P < 0.02, note that this test does not require 
correction for multiple comparisons; Fig. 2c), indicating differential 
sensitivity to the two components (α and δ) across the two areas. In 
addition, a post hoc t-test showed a larger correlation with α in the 
BOLD signals in bilateral amygdala than in ventral striatum (paired 
t-test, t16 = 3.03, P < 0.01; Fig. 2c).

Although it has been associated with affective learning, trial-by-trial 
BOLD activity in the human amygdala has not consistently enjoyed 
a quantitative, computational interpretation comparable to that of 
prediction error in the striatum. Our results, taken together with more 
invasive techniques in nonhuman animals7–9, are consistent with a 
specific functional role for the human amygdala in controlling associ-
ability during learning. This role would be complementary to predic-
tion error signaling in mesolimbic dopamine targets, such as striatum, 
allowing increased processing of cues and enhanced learning.

Our results also link work on the amygdala’s role in associative 
learning in nonhuman animals with research in humans on cortical 
representations of uncertainty and their control over learning rates. 
Bayesian theories predict that several sorts of uncertainty should 
jointly determine learning rates, according to computations only 
approximated by the Pearce-Hall rule11. Correlates of such quantities 
have been reported in cingulate and insular cortices12,13, near areas 
where BOLD signals also correlated with associability in our analysis 
(Supplementary Table 4). We hypothesize that cortical uncertainty 
signals may reflect predecessor variables contributing to the compu-
tation of net associability in amygdala, as the results of lesion studies 
support the amygdala’s causal role as an important hub in learning rate 
control7. However, no single study has yet manipulated all of the dif-
ferent factors necessary to distinguish the many types of uncertainty 
that might contribute to associative learning.

Our findings extend the computational characterization of 
learning signals in the human brain from the striatum (prediction 
error) to the amygdala, whose activity correlates with associability  
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Figure 1 Experimental design and 
behavioral model fit. (a) Experiment timeline 
illustration. The acquisition phase consisted 
of presentations of the conditioned stimulus 
(CS+), which was partially associated with 
electric shock, and an unconditioned stimulus 
(CS−) that was not associated with shock. In the 
reversal phase, the reinforcement contingencies 
for the original conditioned and unconditioned 
stimuli were switched. (b) Average SCRs across 
subjects (red) and the best-fit associability  
trace (blue).
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Figure 2 Neural correlates of associability and prediction error term.  
(a) BOLD activity in the ventral striatum, but not in the amygdala, correlated  
with prediction error. (b) BOLD activity in the bilateral amygdala, but not 
in the ventral striatum, correlated with associability regressor (P < 0.05, 
SVC). The results are shown at uncorrected thresholds to display the full 
extent of the activation. (c) Differential representations of associability (α) 
and prediction error (δ) in striatum and amygdala BOLD activity (±s.e.m.) 
plotted as regression effect sizes (β values, arbitrary units).
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(Supplementary Tables 4 and 5). These results leave open the 
 question of whether associability coding in human amygdala is spe-
cific to aversive tasks or to other features of our experiment, such 
as the use of mildly aversive (angry) faces as conditioned stimuli. 
However, our findings complement previous research that used 
reward learning tasks in nonhuman animals and found similar roles 
for the amygdala and the striatum in the computation of associability 
and prediction error, respectively8. In the context of these findings, 
our results suggest that what distinguishes these two value-learning 
regions may not be the nature of the reinforcer, but rather the com-
putational contribution to the learning signal3,14,15.

Note: Supplementary information is available on the Nature Neuroscience website.
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